NASA TN D-1021

/V -1/ 7Y

NASA TN D-1021

TECHNICAL NOTE

D-1021

ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF FLUTTER AND

DIVERGENCE OF SPRING-MOUNTED CONE CONFIGURATIONS

AT SUPERSONIC SPEEDS

By John L. Sewall, Robert W. Hess, and

Charles E. Watkins

Langley Research Center
Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

April 1962







1G

NATIONAL AERONAUTICS AND SPACE ADMINTI STRATION

TECHNICAL NOTE D-1021

ANALYTTICAL AND EXPERIMENTAL INVESTIGATION OF FLUTTER AND
DIVERGENCE OF SPRING-MOUNTED CONE CONFIGURATIONS
AT SUPERSONIC SPEEDS

By John L. Sewall, Robert W. Hess, and
Charles E. Watkins

SUMMARY

This paper reports the results of an analytical and experimental
study of flutter and static divergence of a rigid conical shell mounted
on springs that permitted freedom in vertical translation and pitch. The
test program was conducted with air as the test medium in the Langley

- by 18-inch supersonic aeroelasticity tunnel at Mach numbers 1.64, 2,
and 3 and with helium in the Langley 8-inch hypersonic aeroelasticity
tunnel at a Mach number of 6.83 and in the lLangley 2L-inch hypersonic
aeroelasticity tunnel at a Mach number of 15.4. Flutter calculations
were made based on several slender-body theories for approximating the
oscillating aerodynamic forces and moments acting on the cone. Good
agreement with experimental results was obtained for the quasi-steady
aerodynamic approaches of Van Dyke and Von Karman at low supersonic
speeds and for Newtonian theory at hypersonic speeds. Pitch-axis posi-
tion and translation-to-pitch frequency ratio had a pronounced effect
on the flutter speed boundary, particularly near a frequency ratio of 1.
No flutter was encountered experimentally or predicted analytically when
the center of gravity of the model was shead of the pitch axis.

With the model restrained to permit only the pitch degree of free-
dom, static divergence was obtained at the low supersonic Mach numbers
for the pltch axis at three-fourths of the cone length measured from the
nose of the cone, but the agreement of experimental with calculated diver-
gence conditions was poor and showed no consistent trend with respect
to variation in Mach number. The introduction of an axial force, based
on steady total drag measurements, into the flutter calculations resulted
in higher theoretical flutter speed boundaries for frequency ratios less
than 1 and slightly lower flutter speed boundaries for frequency ratios
greater than 1. For some calculations the direction of the axial force
was arbitrarily reversed, and this change resulted in lower flutter speed
boundaries for frequency ratios less than 1 and slightly higher boundaries
at frequency ratios greater than 1. The effect of a steady drag force
on theoretical dlvergence boundaries was to raise the divergence speed
parameter above that for zero drag for pitch axes at which divergence
occurs and to lower it for an oppositely directed steady axial force.



INTRODUCTION

Although much of the effort spent in the development of the theory
for aerodynamic forces on slender bodies has dealt with steady-state
conditions, a considerable part of the theory already developed can be
extended to apply to unsteady conditions. Such extensions yield what
are commonly called quasi-steady aerodynamics. To go beyond the gquasi-
steady concept, one must deal with the velocity potential for unsteady
motion, but the extent to which this can be satisfactorily done is
severely limited. In fact, all known approaches for determining body
forces are subject to more or less stringent limitations. For example,
in the quasi-steady concept, the frequency of oscillation must be small

and, in general, the similarity parameter \/lM2 - l’ T << 1 for super-
sonic flow and MT > 1 for hypersonic flow (M being the Mach number
and T the body thickness ratio or some local slope such as the nose
angle). The second of these limitations, which holds for steady as well
as unsteady flow, implies that none of theoretical methods to date can
be relied on throughout the subsonic and supersonic speed ranges, partic-

ularly in the transonic region or in a range where \HM2 - l| T 1is
neither large nor small.

This paper reports an investigation aimed at making some evaluations
of existing theories that can be applied to unsteady conditions. This
effort mainly involved the calculation of the flutter boundaries of
simple spring-mounted cones and comparison of the results with experi-
mental results at supersonic Mach numbers ranging from 1.64 to 15.k,

The cones were actually light hollow shells which were, for all practical
purposes, rigid, flexibility being provided by springs that permitted
vertical translation of and pitch about an axis that could be fixed at
various positions along the axis of the cone. This simplified config-
uration was chosen because its structural characteristics could be accu-
rately represented. Thus, any differences between theory and experiment
would be due mainly to the aerodynamic representation in the theory.

The aerodynamic theories considered in this study are the Munk-Jones
or momentum theory (ref. 1), the frequency expansion of the velocity
potential of first-order slender-body theory (refs. 2 and 3), Von Karman's
approximation for a cone (ref. k), van Dyke's second-order theory
(ref. 5), a piston-theory approximation of Miles and Young (ref. 6),
shock expansion theory (ref. 7) treated in the sense suggested by Eggers
and Savin (ref. 8), and Newtonian theory with two modifications (refs. 9
to 11).

Although the present paper is primerily concerned with flutter, the
static aeroelastic phenomenon of divergence is also considered, and some
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limited comparisons with experiment are made. Provision is also made in
the basic flutter and divergence analysis for the introduction of a
steady axial force. Results of some calculations are presented including
such a force in the form of a steady-state drag coefficient, and values
of this coefficient are based on messured base pressures and drag forces
on the models used for the flutter and divergence tests.

SYMBOLS
a free-stream speed of sound
Ann aerodynamic coefficient in pure translation in flutter

equation (eq. (2))

AyarAan aerodynamic translation-pitch coupling coefficients in
flutter equation

Aqq, aerodynamic coefficient in pure pitch in flutter equation

b length of cone measured along axls of cone

Cp pressure coefficient

Cp total drag ccefficient

CuD moment coefficient due to drag, Cyp = CDiD

D drag force, positive aft, qﬁb2CD, 1b

f frequency, o/2x

F function proportional to pressure coefficient as derived

for quasi-steady theories (see table following eq. (7))

f(t), f(FO) hermonic functions of time in shock expansion theory
(see appendix)

g structural damping coefficient in eigenvalue for flutter
(see eq. (2))

hg translational amplitude of pitch axis of cone flutter
model, positive down

Ia mass moment of inertis of cone flutter model in pitch about

pitch axis



fo uncoupled pitching frequency

fe flutter frequency

n nth natural (coupled) frequency where n = 1,2

Ko term by which downwash 1s introduced into Von Karman's
quasl-steady theory (see appendix)

3w

k = -V_ reduced frequency

Ky spring constant of cone flutter or divergence model in
pitch

1(x) 1lift per unit length acting on cone, 1b/ft

L generalized lift (see eq. (3))

Ll,L3 1ift components of real aerodynamic coefficients in
frequency-expansion method

Lo,L), imaginary 1ift components of aerodynamic coefficients in
frequency-expansion method

m mass of cone flutter model free to pitch

my, mass of cone flutter model in vertical translation

M free-stream Mach number

M, generalized aerodynamic moment about pitch axis
(see eq. (4))

Ml,M3 real moment components of aerodynamic coefficients in
frequency-expansion method

Mp, My, imaginary moment components of aerodynamic coefficients
in frequency-expansion method

ﬁh Mach number of unyawed cone at its apex behind shock wave
on surface of cone

Mg Mach number immediately behind shock wave at nose of cone

index

o]
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r(x)

Ty

XD

z(x,t)

pressure on body surface

pressure on unyawed cone at its apex behind shock wave on
surface of cone

free-stream static pressure

dynamic pressure

dynamic pressure at divergence

function of M® and 7 given by equation (A16)

radius of body of revolution at distance X from the nose,
r T
b

base radius of body
Io

mb2

dimensionless radius of gyration about pitch axis,

time

local normal velocity at point on surface of body of
revolution

free-stream velocity

downwash velocity

distance along body center line and tunnel center line
measured from nose of body, positive aft (see fig. 1),
bX

distance from pitch axis to center of drag force, biD

distance from nose of body to pitch axis of cone flutter
or divergence model, bXy

distance from pitch axis to center of gravity of model in

pitch, positive for center of gravity aft of pitch axis,
bx
g

amplitude function specifying motion of body, see eq. (Ba)



agp rotational amplitude of cone flutter model in pitch about
pitch axis, positive nose up
B=VM -1
E angle between shock wave and body surface (see sketch
following eq. (A13))
ul parameter in shock-expansion theory given by eq. (a15)
o) semi-vertex angle of cone
H(x) series in 1ift expression for frequency expansion method
(see eq. (5) and ref. 3)
Y ratlio of specific heats
w angular frequency, 2xf
Wy, uncoupled angular frequency in vertical translation
Wy uncoupled angular pitching frequency
W nth natural (coupled) frequency where n = 1,2
9 complex elgenvalue for flutter (see eq. (2)),
W \2
<7Q> (1 + ig)
w
H mass-density ratio, o 5
npbIy,
p airstream density
Iy
Hh = o
) angular polar variable of integration around body of

revolution (see sketch following eg. (6))

Nondimensional lengths are denoted by barred symbols unless other-
wise specified.
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EXPERIMENTAL PROGRAM

The experimental data used to provide a basis for evaluating various
theories for calculating the oscillating aerodynamic forces on cones was
obtained by testing simple spring-mounted cones in supersonic flow for
flutter. These models and the necessary supporting apparatus were
designed to permit translation of and pitch about an axis perpendicular
to and intersecting the longitudinal axis of the cone. In addition to
the flutter experiments, divergence tests were made at all Mach numbers
except M = 6.83 and 15.4. Also, base pressures were measured at the
lower Mach numbers, and total axial-force measurements were made at

M = 6.83.

Properties of Models

The models consisted of hollow conical shells mounted on springs
as shown in figure 1. These conical shells were made from balsa wood
laminated with paraplex and fiber glass and were reinforced at the
trailing edge with a fiber glass ring mounted just inside the cone.
This construction resulted in a shell structure that was for all prac-
tical purposes rigid with respect to the mounting springs. Flexibility
of the model in pitch was provided by a flex hinge which, as shown in
figure 1(a), is composed of a pair of Swedish steel straps crossed
between two steel blocks. The pitch axls was located at the intersection
of the straps and variations in the hinge stiffness were obtained by
varying the strap thickness. Flexibility in translation was obtained
from the arrangement of two parallel straps shown on figure 1(a). This
arrangement permitted only vertical translation of the pitch axis. The
translation stiffness was varied by varying the length of the straps for a
particular strap thickness.

The mass of the model free to pitch m consisted of the mass of
the cone and its aluminum mounting bar plus the mass of the pitching
springs and the forward mount block. The mass of the model in transla-
tion m, consisted of the mass of the model in pitch plus the mass of

the aft mounting block and the effective mass of the translation springs.
The effective mass of the translation springs was estimated to be

0.37 times the actual mass of the springs. Geometric and inertial prop-
erties of the models are listed in table I.

In order to keep the structural damping as low as possible and to
minimize the structural differences between models, the springs were
clamped to the steel blocks as tightly as possible.



Test Program

The experimental program was conducted in the Langley 9- by 18-inch
supersonic aeroelasticity tunnel at Mach numbers 1.64, 2, and 3 and in
the Langley 8-inch hypersonic aercelasticity tunnel at a Mach number
of 6.83. 1In addition, one flutter test point was obtained in the Langley
2h-inch hypersonic aeroelasticity tunnel at a Mach number of 15.%. For
each model at each Mach number, the stiffnesses were varied, as previ-
ously noted, to obtain a wide range of uncoupled translation-to-pitch
frequency ratios. This parameter was obtained from the relation

|+

(1)

£

- 1
2 2
CE) @ -
1 &2
in terms of the measured natural (coupled) frequencies ay, Wy, and

the measured uncoupled pitching frequency W,+ These frequencies were

obtained by shaking the model with an air Jjet shaker (similar to that
described in ref. 12) prior to each tunnel run and by reading oscillo-
graph traces of signals from resistance-wire strain gages mounted on
both translation and flex hinge straps. The uncoupled pitching frequency
was obtained with a spacer wedged between the translation spring straps
to eliminate the translastional degree of freedom. Damping coefficients
were measured from records of the decay of free oscillations and were
found to be very small (that is, g = 0.005 to 0.01).

In the operatlion of the tunnels, the Mach number was held constant
whereas the test-section density was increased until flutter occurred.
A recording oscillograph was used to obtain a continuous record of tunnel
stagnation temperature and pressure. Strain-gage signals on the same
oscillograph record were used to indicate the onset of flutter and to
determine the flutter frequency. Divergence conditions were determined
for model 4 (X, = 0.75) for Mach numbers 1.64, 2, and 3, the transla-
tional freedom being eliminated by substitution of a solid bar for the
translation springs. The onset of divergence was determined from the
flex-hinge strain-gage signals.

Axial-Load Measurements

The total steady aerodynamic drag acting on the cone mounted on the
sting was estimated for three of the Mach numbers tested by a combination
of measured and calculated data. At M=2 and M =3 the total drag
coefficient Cp was approximated from measured base-pressure dats

N oYY
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together with calculated forebody pressure drag and skin-friction drag
coefficlents. At M = 6.83, Cp was obtained from force measurements

made on a model fitted with an axlal-load cell rigidly attached to the
sting. Values of Cp are listed in table II. The two different values

for each Mach number result from the variation of Cp with Reynolds

number corresponding to the wide ranges of dynamic pressures covered in
the test programs.

Experimental Results

The experimental flutter and divergence data are listed in
table ITII. Flutter was obtained at four of the Mach numbers over a wide
range of frequency ratios for all models except those in which the center
of gravity was shead of the pitch axis (ig negative in table I).

The flutter results in table III are shown in coefficient form as
functions of frequency ratio in figures 2 to 11. The flutter speed is
given in the upper parts of the figures in terms of a stiffness-
altitude parameter similar to that so widely used in wing flutter. For
the test ranges of mass-density ratio l/p and pitch frequency wy,,
all the flutter speed data for a given pilitch-axis position tend to lie
on the same curve. The flutter frequency is given in the lower parts
of figures 2 to 11 in terms of the ratio “hJ“& which also appeared to

be unaffected by changes 1n density or pitch stiffness.

Note that the experimental flutter speed appeared to be highly sen-
sitive to frequency ratios very close to 1. This is particularly evident
in figures 2, 3, and 5 to 8 where the flutter speed dropped to a low

h_1.0 to &
Uy,

point between &; = 1.2 from a no-flutter condition at

fﬁ =~ 1.0. It is also evident that this minimum point tends to decrease

W,

(04

slightly with increasing Mach number from M =1.64 to M =3 but
experlences more of a reduction et X, = 0.58 than at X, = 0.5. The
effect of pltch axis, including X, = 0.667, is also mentioned later in

connection with the analytical flutter boundaries.

The divergence tests on model L4 at Mach numbers 1.64, 2, and 3
resulted in near linear variations of dynamic pressure with fy

(proportional to pitch stiffness) as shown in figure 12. The scatter
in the data at Mach number 2 may be due to the fact that more difficulty
was encountered here than at the other two Mach numbers 1n detecting the
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onset of divergence. The slope of each trend in figure 12 is propor-

o 2 2

nggbry, 2nqgbry,

tional to the divergence parameter -——mpm————0 |0 ————— which 1is
N ko

shown as a function of Mach number in figure 13.
ANALYTTICAL, STUDLES AND COMPARISON WITH EXPERIMENT

The analytical work of this investigation is reported and compared
with experiment in this section. This work consisted mainly of calcu-
lating flutter boundaries for the spring-mounted cones by using various
slender-body theories to approximate the oscillating aerodynamic forces
and moments acting on the cone. The basic flutter equation is presented
for the translation and pitching degrees of freedom shown schematically
in figure 1(b). Included also in this section 1s the equation for
static divergence. Provision is made in the aerodynamic forces for the
addition of & steady total axial force in both flutter and divergence
equations, and calculations to determine the effect of this force are
based on measured drag data.

Flutter Equation

The flutter equation, derived in the usual menner for the system
shown in figure 1(b) is, in matrix form, as follows:

|
N\
J
~
J

A 2 A A
1-<&>Q+£‘i _ﬂ_l.ig+ﬂ hT? 0
Wy Mh my Hy,
4 o= < 3 (2)
- Aon 2 | Ay
X, + =2 (1 - 2)r,~ + — 0
- g n < u_LaO, L

The aerodynamic coefficients Apn, Apys Agn, and Ay, are obtained
from the generalized lift and moment expressions

L = Lb 1(x) dx = npbgrb%?@hh 2—0- + Ahaa(b (3)

NN -
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and

b
M, = L/; (x - xa>l(x) dx = ﬂpb5rb2w2<%dh %? + Auaq§> (%)

In the following sections expressions for 1(x) are given for each of
the slender-body theories considered in thls study. Corresponding
expressions for Apy, Ay, and so forth, are listed in table IV.

Unsteady Aerodynamic Coefficients

A limiting form of the velocity potential for the oscillatory case
is known in the form of definite integrals. (See, for example, ref. 2.)
These integrals can be evaluated by expanding the integrands in powers
of reduced frequency k as is done 1n references 2 and 3 or by numerical
integration procedures such as those used in reference 15. In refer-
ence 3 the frequency expansion is carried to the fifth power of k for
the motions considered in the present study, and the 1ift per unit length
is given therein by the expression

1(x) = -npoVr(x) A(x) (5)

for an arbitrary body of radius r(x), where B = /M - 1 and A(x) is
a series of terms that are functions of Mach number and mode shape for
the cone. Use of this series in equation (5) is shown in reference 3

to give the aerodynamic coefficients listed in table IV. The L and

M terms in these coefficients are functions of Mach number, mode shape,
and reduced frequency and are also given in detail in reference 3. This

2
method is valid for low values of O = 2kM™ and was applied in the

2
B
present study for Mach numbers of 1.64, 2, and 3.

Quasi-Steady Aerodynamic Coefficients

Applications involving closed-form solutions.- An extension of
steady-flow theory to the unsteady case for a body of revolution basi-
cally involves the introduction of the downwash into an expanded form of
the steady-state pressure coefficient. The lift per unit length is then
obtained by circumferential integration of the vertical component of the
pressure at a point on the body surface, that is, through the relation
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2
1(x) = qr(x) \/ﬂ " Cp sin 6 de (6)
0]

where ¢q is the dynamic pressure, 6 is the variable of integration
as shown in the following sketch, and Cp 1s the pressure coefficilent

which is a function of Mach number, local slope of the body surface,
and downwash and specifies the motion of the body. (Further details on
the form of Cp used in eq. (6) are given in the appendix for two par-

ticular theories.)

r de

N ie chpr(x)sin 8

A

Performence of the indicated integration in equation (6) leads to
1(x) = -npVr{x)Fw (7a)

For a cone of semi-vertex angle &
1(x) = -noVx82(F/8)w (0)

where the quantity F/S 1s given in the following table for the quasi-
steady theories considered in this paper. (The introduction of the
negative sign in eqs. (7) makes the direction of pressure indicated in
the foregoing sketch compatible with the direction for positive down-
wash components h and o indicated in fig. 1(b).)

VORIV ol o
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THEORY F/5
Munk-Jones (ref. 1) 2 + %6{ % + %)
Von Kermen (ref. 4) Ee.og I’% - l)
Van Dyke's 2d order 2[1 - 62<Melog 2 . -Z—ME + 1)}
theory (ref. 5) po

Piston theory (ref. 6) 1, 2x*+1,2+1ys
MB 2 4

Newtonian theory (refs. 9 F .2, (ref. 9)
to 11) 5
F_
5= + 1, (ref. 10)
F. ~ 22301 o 2LEZ2L) (rer. 11
o) Cpma_x vy + l( Yy + 3 M/’ ( )

The ratio of specific heats 1s denoted by 7.
The first of these theorles, also known as the momentum theory, 1ls seen
to be independent of Mach number. The next two theories apply to low
supersonic Mach numbers and the last two to high supersonic Mach numbers.

The downwash w 1in equations (7) 1s given by

dz , Oz (8a)

w=V =+

x ot

where 2z specifies the motion of the body and in the present study is
given by

2(x,8) = 2(x)£(t) = z(x)el®® (8b)
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with
z(x) = hy + (x - xa)ao (8c)

for the osclllatory translaetion and pitch degrees of freedom represented
in figure 1(b). The 1lift per unit length i1s thus completely determined,
and use of equation (T7a) with equations (8) in equations (3) and (%)
leads to the quasi-steady aerodynamic coefficients listed in te&ble IV.

Application of shock-expansion theory.- This method also involves

a quasl-steady approach with the 1lift per unit length given by equa- L
tion (6) and the pressure coefficient by the basic expression é
6

M= oo .

where p 1is the pressure on the surface of the body and p, 1is the

pressure in the undisturbed stream ahead of the body. The pressure
ratlo p/p°o is derived in reference 7 for high supersonic speeds in

terms of the downwash and the approximate expressions of reference 8
for pressure ratio and Mach number on the surface of the body behind
the shock wave at the nose. These approximations of reference 8 are in
turn functions of the shock-wave inclination corresponding to the slope
of the body at the nose.

o]
The application of this method to the 7% (semi-vertex angle) cone

of the present study 1s demonstrated in the appendix for Mach number 6.83,
and the specific 1ift per unit length for this case is shown to be

2(x) = - 3.86qm8E~%

1
= - +agy + Tf‘£(1.572x - xa)a,o (10)

The introduction of this equation into the flutter equation (eq. (2))
by means of equations (3) and (4) results in the aserodynamic coefficients
also listed with those of other theories in table IV.

Divergence Equatlons

With hp =0 and w =0 1n equation (2), the equation for static
divergence is given by

kyag = ah?IagO = My (11)
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where M, 1s based solely on the steady-state part of the aerodynamic
forces and k, 1s the spring constant of the model in pitch. For the

Munk-Jones theory, equation (11) reduces to

2ng b2
e L 1 (12)
Ke, 1,
1 -5, - [ Pa

0
raabny” = -1 (12a)
ke 2 _x 2

5 (04

for the cone, where a3 is the dynamic pressure at divergence. Equa-

tion (12a) is plotted in figure 14 as a function of pitch-axis position,
and, as may be seen, the cone is free from divergence for pitch axes
located in the first two-thirds of its length.

From equation (11), it can be shown that the divergence equatiocn
based on the frequency expansion theory (ref. 3) is given by

Enqdbrb2 _ -1
fa (%-ia)\/l-(ﬁtan&e

Similarly, for the quasi-steady theories of Von Karman, Van Dyke, and
Newton, together with piston theory due to Miles and Young, equation (11)
reduces to

(13)

2ﬁqdbrb2

" 70 - 2 (14)

Note that for the Newtonian theory for % = 2, equation (14) becomes

identical to equation (12a) which is based on the Munk-Jones theory.

Equations (13) and (1) are also plotted in figure 1k, equation (14)
being for both the Von Karman and Van Dyke theories. The frequency
expansion and Van Dyke theories are shown for a Mach number of 5 and,
as indicated by the close sgreement with the Munk-Jones theory, predict
a small Mach number effect. Thils is seen more clearly in figure 13
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vwhere, in contrast, the Von Karman and piston theories predict a substan-
tial Mach number effect.

Analytical Results and Comparison With Experiment

Results of flutter and dlvergence calculations based on the aero-
dynamic theories described in the preceding sections are presented and
compared with experimental results in figures 2 to 11 for flutter and
in figure 13 for divergence. The effect of introducing a steady total
axial force into the analysis in terms of drag coefficient is discussed
herein and shown in figures 15 to 20 for flutter and in figure 21 for
divergence.

Flutter.- From the analytical flutter speed boundaries in the upper
parts of figures 2 to 11, it is evident that the different aerodynamic
theories used in the flutter analysls generally tend to be more distin-
guishable from one another for frequency ratios greater than 1 than for
frequency ratios less than 1. As the pitch axis was moved aft, this
distinction lessened, and the minimum points in the different boundaries
were lowered. The effect of pitch-axis position is particularly evident

for the case of M = 6.38 when X4 = 2, The Munk-Jones theory gives

)
g-—z—— in all cases considered, and this minimum
E'QzﬁI

value, although it appears to be, is not zero. The frequency ratio at
which this minimum occurred decreased as the pitch axis was moved aft
(compare, for example, figs. 2 and 3) but, as the center of gravity was
moved aft for a given pitch axis, the frequency ratio for this minimum
point increased. (See fig. 5.)

the lowest value of

Comparisons of analytical with experimental flutter speed boundaries
show the Van Dyke and Newtonian theories to be in better agreement with
experiment than the other theories, although this is less evident at
M = 6.83 (for the Newtonian theory), because of the fewer number of
experimental points obtained at this Mach number.

In contrast to the behavior noted for g—ll——, the parameter <q1ﬁgf
F Wk

showed consistently smooth varilations throughout the entire range of
frequency ratios covered. Moreover, regardless of the aerodynamic theory
used, the flutter frequency appears to follow the same genersl trend, and
ell the theories considered give good agreement with experiment.

[AOI AN \O I el o)
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Divergence.- Comparison between theoretical and experimental diver-
gence trends in figure 17 shows poorer and less consistent agreement than
that obtained for flutter. No definite explanation is offered for the
apparent Mach number effect indicated by the Von Karman and piston
theories 1n contrast to the trends of the other theories. As may be seen

>

in figure 14, this large effect is not confined to ia = = but is magni-

L

fied at this location prcbably because of its proximity to the infinite

discontinuity at x_ = 2

@ 3

(which is also the center of pressure of the
cone).

Consideration of axial force.- Whereas axial forces have seldom been
considered in aeroelastic problems on lifting surfaces, the greatly
increased aerodynamic drag due to the blunter aerodynamic shapes of mis-
sile configurations together with the large deceleration forces experi-
enced by these configurations have drawn attention to the possible
effects of axial forces on the aeroelastic behavior of bodies of revo-
lution, which, of course, form the basic shapes of missiles. In the
present flutter and divergence studies of cones with their apexes pointed
upstream, a steady axial force D is included with the other forces in
the analysis and is assumed to be acting at a distance xp aft of the

pitch axis as shown in figure 1(b). The presence of this force gives
rise to a moment about the pitch axis and tends to decrease the angle of
attack so that the generalized moment given by equation (4) becomes

pr

= X - 1(x dx - X

Mo = [ (- %)) dx - D) (1)
‘nb

Ma = J/O (X - XCL)Z(X) dx - CDqﬂbeXDG, (153)

where the axial force is written in terms of a drag coefficient Cp that

is based on the total of all steady drag forces acting on the cone. This
modification of the generalized moment in pitch results in the addition

of the quantity - —£§ Chp to the coefficlent Ay, in the flutter equa-
8k

tion (see table IV), Cpp being a moment coefficlent due to drag given
by Cpp = CDiD' The divergence equations with the effect of drag

included are
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2
Eﬂqdbr
b 1
K - - 7 (16)
@ — . C
1 - X, - f 24z + D
2
0
for the Munk-Jones theory,
21q4bTy° 1
K = (17) L
a 2 o 2 CII]D l
<-5—-ia>\[l—(8tan6)+—2 2
6
2
for the frequency expansion method, and
2nq.bry 2
LI 2! (18)
kK T oA X C
@ F/lL _ Za +_m_2
B> 2 2

for the quasi-steady theories.

The effect of introducing a steady total drag force into the flutter
analysis in the manner just described is shown in figures 15 to 20 for the
Van Dyke and Newtonian theories. Similar effects on the analytical flut-
ter boundaries have been obtained for the Munk-Jones and Von Karman
theories. The values of Cpp used in the calculations are based on the

values of Cp given in table II. 1In figures 15 to 19 the effect of

positive values of Cpp 1s to reduce the sizes of the flutter regions
for ia = 0.5 and ia = 0.58, and for each pitch axis and Mach number

there is a minimum frequency ratio below which the cone is flutter free.
It may also be of interest to note in figures 15 to 19 that the left
branches of the theoretical flutter boundaries with positive values

of Cyp tend to lie somewhat closer to the experimental flutter points
than do the theoretical flutter boundaries for Cpp = O. However, for
frequency ratios greater than 1, the agreement between theory and experi-
ment is slightly better for Cpp = O than for Cpp > O.

A few flutter calculations were performed with the sign of Cyp
arbitrarily changed from plus to minus in order to determine the effect
on flutter of an axial force in the flight direction, such as the force
due to decelerated flight. The results of these calculations are shown
in figures 19 and 20 for Cpp = -0.03 and -0.02, respectively, and the
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effect is seen to be opposite to that found for Cpp = 0.03 and 0.02.
That is, for X, = 0.5 (fig. 19) the flutter region is enlarged, and

for x, = 0.667 (fig. 20) there is a meximum frequency ratio above which

the cone is flutter free. The lower parts of figures 15 to 20 indicate
that the flutter frequency is not appreciably affected by the introduction
of a steady axial force.

Some effects of axial forces on the theoretical divergence charac-

teristics are shown in figure 21 for the Munk-Jones and Newtonian <§-= é>

theories. For the range of values of Cpp used in the flutter calcula-
tions, the effect of positive values of Cpyp 1is to increase the theo-
retical divergence speed above the divergence speed for Cyp = 0, and
the effect of negative Cpp 1s to decrease divergence speed below that

for Cypp = 0. At ia = %, the agreement with experiment is worse for

Cup > © than for Cpyp = 0.
CONCLUDING REMARKS

This paper reports the results of an experimental and analytical
study of the flutter and divergence behavlor of rigid conical shells
spring mounted with freedom to translate vertically and pltch in super-
sonic flow. Translatlon-to-pitch frequency ratic was varied over a wide
range above and below a frequency ratio of 1, and three pitch-axis
positions were examined for flutter and one pltch-axis position for
divergence. Results glven in terms of a stiffness-altitude parameter
similar to that used in wing flutter show a strong effect of pitch-axis
position and frequency ratio on the flutter-speed boundaries, partic-
ularly near a frequency ratio of 1.

The distinction between several slender-body theories for approx-
imating the oscillating serodynamic forces and moments in the flutter
calculations generally tends to be more evident at frequency ratios
greater than 1 than at frequency ratios very close to 1. Comparison of
analytical with experimental flutter-speed boundaries shows the quasi-
steady theories, particularly Van Dyke's second-order theory, to be in
better agreement with experiment than are the other theorlies at low
supersonic Mach numbers. No flutter was encountered experimentally or
predicted analytically when the center of gravity of the model was ahead
of the pitch axis.
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Agreement between calculated and experimental static divergence
boundaries for a cone with pitch axis at three-fourths the length of
the cone, measured from the nose, is poor and not consistent with respect
to variation in Mach number. In other words, none of the theories used
showed a consistent agreement - or even a lack of agreement - with exper-
iment for the Mach numbers considered.

The introduction of an axial force based on steady total drag mea-
surements into the flutter calculations resulted in increased theoretical
flutter-speed boundaries for frequency ratios less than 1 and slightly
decreased boundaries for frequency ratios greater than 1. For an arbi-
trary change in the direction of the axial force at a Mach number
of 6.83, the reverse trends were obtained.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., December 4, 1961.

N oONO -



ASOAN (S Wl v

21

APPENDIX

ON THE USE OF THE STEADY-STATE PRESSURE COEFFICIENT IN
DETERMINING QUASI-STEADY AERODYNAMIC COEFFICIENTS

FOR BODIES OF REVOLUTION

As noted in the main body of this paper, the extension of steady-
flow theory to the unsteady case for a body of revolution basically
involves the introduction of the downwash into an expanded form of the
steady-state pressure coefficient. Pertinent details of this procedure
are presented briefly in this appendix for the Von Karman and shock
expansion theories.

Von Karman Theory

In the method due to Von Karman (ref. 4), the steady-state pressure
coefficient can be written as

2
2K
Cp = c log _2M'__ - _:l:.> (Al)
M2 BKe 2
where
g v Vfar, wot) (ﬂ (2a)
a aldx v
Ko = M<8 + \‘7' sin e) (A2b)

for a cone of semi-vertex angle B, Vv being the local normal velocity
at a point on the surface of the body, and a the speed of sound in the
undisturbed airstream. The derivation of equation (A2a) is based on the
boundary condition requiring the vanishing of the velocity of flow normal
to the body surface and involving the relation
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v = Varag::,tg + Bras:;!t) (A3)

where r(x,t) = r(x) + z(x,t)sin 8, as shown in reference 3, for example.
Equation (Al) may be expanded in a Taylor's series about w = 0O to give
(retaining only the first two terms of the series)

~ 082 2 _1 45 2. .1\¥
Cp =28 <log 5 2\) + (log 5 J)v sin © (AlL)

Substitution of equation (A4) into equation (6) leads to

L 2x
= 2 ..2_ - w f i e
1(x) = Lgxd (log o l>v o sin“6 de
(A5)
= 2 2 _ 1%
1(x) = bngxd (log = 1>V

for the 1ift per unit length. This equation may be put in the form of
equation (Tb).

Shock Expansion Theory

The pressure ratio used in equation (9) for the shock expansion
theory at high supersonic Mach numbers is from reference 7 given by

E . /p—l‘l> 1 + My sin eE‘l-fo(t) + E(x)\lT %

, =\ |/az %\, #(0) ¥(t0)
+ sin 8(n - MMy) <d'x>x=0f<t v> i ke (46)
t- =
v

for a cone, where f’N and ﬁN are the pressure and Mach number for the

unyawed cone at its apex behind the shock wave on the surface of the cone,
and where the motion of the body is specified by equation (8a). The

oY -
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are given by

E l
-_— =
ax © K
(' (AT)
z(0) = hy - “oxa}
By letting t = to + \Ef
in (to+ =
f<t0> = e (O V) (A8)
and
ar (t _x)
(o) et () (49)
ato |, _x

Substitution of equation (8a) and equations (A7) to (A9) into equa-
tion (A6) results in the following expression for the pressure ratio for
a cone undergoing vertical translation of and pitch about an axis perpen-
dicular to the axis of symmetry:

pN( _ : )
2 (B)(s e e £+ ]

AN

iw

+ sin B(T] - 7ﬁN> [‘10 + ‘lva‘)<ho - O‘Oxaﬂ e—T et (A10)

Py

The pressure ratio 53 and Mach number MN are obtained from the fol-

lowing approximate expressions derived in reference 8:

i\
poo

2y
- [1 ¥ 7(Ma)2]<’f_8\7-1 (a11)

My
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A r L\ 10g/ M0\ ’—@)2\ (a12)
2 \M/ | MB/ B/l

TN
a5
~—
it

where

MB = vf’fl + <7 g l>(ME>)2 (A13)

and E is the angle between the shock wave and the cone surface as
illustrated in the following sketch for the unyawed cone:

Mg 1s the Mach number immediately behind the shock wave at the nose of

the cone, and

=] = — (a14)
[ 2] ( y -1 2'
1 + 7(Mb) i \1 = (M8)= |

[ —

Y+ 1 2
1+ 25X (ms
<M52 2 )

The parameter 7 in equations (A6) and (A10) is obtained from the
following relations given in reference T:

1 yqft + 22 Lus)2, (MN (Mzs)”
M 7Q\/l L—=(Mb) > ‘1 . —-(ME‘)) ][ é l(m)e] [1 N 7(M8)2"l

(A15)

N OV - H
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2
1+ (M0)
1+ Z——’;—l—(MS)2
VTS i ME (A16)
¥ + 1

Jl + Z;E—E(MB)E

When the shock expansion theory was applied for M = 6.83, the
following numerical values of the pertinent parameters given by equa-
tions (A10) to (Al6) were used:

5 = 7.5° (tan ®
M= 6.83

_ D :
Y = 3 for helium
MB = 1.4418

2

Gf— = 0.82048

M/

it

<Ms 0.92635

— = 2,84
5. 355
M

- = 1.1312
v 3125
Q = 0.7hkOh7

= 0.1317 actually used)

By using these values in equation (Al0) and substituting this equation
into equation (9), the 1lift per unit length determined from equation (6)

is
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Z(X) = _q.2_.7%5_\2.1¥8 ag + —1‘7@-[}10 + Cto(X - Xa)}
J

. _iwx\ )
- 0.5505%0 + 1V—‘°(ho - aoxa)]e Vo dmt (A1T7)

1w
- —X
w

which reduces to equation (10) when e v is approximated by 1 - i]—x,

im 2 iwt
and <.__> and higher power terms are neglected. The factor e is,
of course, eliminated by virtue of the assumption of simple harmonic

motion initially in the derivation of the flutter equations.

[ASINCANAGIN ol ol
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TABLE I.- PROPERTIES OF MODELS

[b = 0.667 £t; 5 = 7.5%; and 1y, = 0.0878 ft]

_ m, _ Iy o
Model Xa lb-secz/ft Xg ft-1b-sec® Ta,
1 0.50 20.11 x 10~% | 0.0564 0.5225 x 10-% | 0.0585
1A .50 21.7 .0862 543 .0562
1B .50 20.72 .0813 o6 .0538
2 .58 21.69 .02125 .510 .0529
3 667 19.97 -.0k96 486 .0549
3A 667 26.05 .0%65 .T64 L0659
3B 667 20.91 .00L375 . 366 039k
4 .75 23,35 -.0685 .558 .0538
TABLE II.- DRAC COEFFICIENT DATA
Cp
M Average Average
upper lower
value value
2 0.295 0.275
3 .19 .16
6.83 .06 Mol ys

O
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Figure 2.- Flutter boundaries for model 1 (J'cOL = 0.50) at a Mach number
of 1.6k,
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Figure 3.- Flutter boundaries for model 2 (ia = 0.58) at a Mach number
of 1.64,
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Figure 7.- Flutter boundaries for model 1 (Xq = 0.50) at a Mach number of 3.
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Figure 15.- Effects of steady axial force on the flutter boundaries of

model 1 (X, = 0.50) at a Mach number of 2.



L8

2.0 r /
//
s,o0 /
/ it
/
/
| ! /
| R s
| / /
| / //
1.2 | | | ;7
| /
—V | // /
|
2 WoviL V! /O,/
8 r Vo 0o /
\ /
\ /,
\| o V4
\
. \ ~7
./
o) i 1 i 1 L 1
1.2
R
8 N ~
~
o
wg oo
W T—~o-_
—
ak Theory
T e van Dyke, Cyp= O
——— ——Van Dyke, C,p=.12
Experiment
O ;=416 to 42.05 cps
] 1 1 1 1 1
6] 4 .8 1.2 1.6 20 24
Wy
We

Figure 16.- Effects of steady axial force on the flutter boundaries of
model 2 (X, = 0.58) at a Mach number of 2.

cocT~1



4G

2.0

.2

L-1262
<

rjo
QS
S

k9

[ No flutter, sustained
non-divergent oscillation
] 1 I L 1 ]
-
N
N
r\\
i \u\b\
\\(\
T
\\D\\\
Theory \\‘*===>;ﬁ_
| ———— Van Dyke, Cmp= O -
————-Van Dyke, Cyp=.08
Experiment
O f,=42.65 to 42.75 cps
0 f;=47.25 to 48.0 cps
] ] 1 i ] J
4 .8 1.2 1.6 2.0 24
@h
Wa

Figure 17.- Effects of steady axial force on flutter boundaries of
model 1 (Xg = 0.5) at a Mach number of 3.



20 /
/ /
/ /
/ /
/ /
1.6 |- / /s
Maximum tunnel conditions // O/
attainable without flutter— ! /",
/
12 b " / /
v “ %
b, . : ’,/
! Q
8 \ ‘
/
| /O
i
w<> )
4+
\
o) | I ] 1 | _J
1.2 -
~
\\ .
8- I~
© ?}Q;§t\
> Theory O
U van Dyke, Cmp=0 ==
ab— " van pyke, Cmp=-08
Experiment
O =423 1o 42.85 cps
O f,=48 cps
O £,:=56.55 to 57.4 cps
] 1 | 1 1 N
0 4 8 1.2 1.6 20 24
Yh
wa

Figure 18.- Effects of steady axial force on flutter boundaries of

model 2 (X, = 0.58) at a Mach number of 3.

29Tl



L-1262

20 r v
I /
i
I O
\ L
1.6 |- l‘ ’ £
\ S
| Z
\ 1 //
{ |
BEN faY ////
i.2 r- | v
\
_b;L \\\\\
?wa«/ﬁ \
8 0
\\\\/
a4t
0 ] [ L 1 ! i
1.6 r
Cmo=‘.o3
1.2 <
N
AN
Cnpn=.03
9 gl mo=03" &
@
f Experiment o
O 1,=376¢cps A f,247.6cps SSaY
0 f4=39.5cps  V f,=539cps S~
Ofp=a53cps N f,=55.1 cps O——_
4 - Theory
————— Newtonian(F/8 = 2), Cpp= 0
=~ Newtonian (F/8 = 2), Cpp=.03
— — = Newtonian (F/8=2) C,np=-03
] ! ! ] ] 1
0 4 8 1.2 1.6 2.0 24
w
—h
a
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Figure 21.- Effect of steady axial force on divergence behavior of a
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